Classification: CrownThrive Internal • Trade Secret • Attorney–Client Draft
Scope: End‑to‑end algorithms, scoring formulas, model specs, data schemas, rule DSL, engine logic, proofs/invariants, and implementation guides for all core subsystems powering CHLOM™, LEX, DLA, TLaaS, ADE, ACE, CrownLytics, CrownPulse, FindCliques / NFTCliques / ChainCliques, ThriveSeat, AdLuxe Network, CrownRewards, CrownFluence, Kamora360, NeuralCraft AI Studio, and related services.
Use this document to (a) generate provisional applications; (b) brief counsel; (c) guide engineering builds. Keep off public networks.
0) Architecture at a Glance
- Layer‑1 Metaprotocol: Compliance‑at‑Consensus; custom VM (ComplianceVM), State (License Registry + Audit Log), Privacy (ZK), Execution (Rule DSL).
- Control Plane: TLaaS, LEX, DLA, ADE, ACE, Oracles & Governance Scribes (OGS).
- Data Plane: Transaction Graph, Identity Graph, License State Machine, Payout Graph.
- AI Plane: Risk Scoring, Fraud/Anomaly Detection, Reputation & Sentiment (CrownPulse), Matching (Cliques), Forecasting (AdLuxe & CrownLytics).
Key invariants (must always hold):
- I1 Compliance Finality: A block is final only if every included transaction passes
- I2 Value Conservation: ∑Inputs = ∑Outputs + Fees + Taxes + Insurance + (Escrow Δ) for each settlement window.
- I3 License Liveness: Every active license NFT is either VALID, SUSPENDED, or REVOKED and transitions via authenticated events only.
- I4 Privacy Soundness: Any private predicate used in consensus has a valid ZK proof verified by on‑chain verifier.
1) Rule DSL (Metaprotocol) — ACE/ComplianceVM
Goal: Convert regulations into executable logic.
1.1 Grammar (EBNF)
POLICY := 'policy' IDENT '{' RULE+ '}'
RULE := 'require' PREDICATE ('else' ACTION)? ';'
PREDICATE := COMPARISON | LOGIC
COMPARISON := FIELD OP VALUE | FUNC '(' ARGS ')' OP VALUE
LOGIC := PREDICATE (('and'|'or') PREDICATE)+ | 'not' PREDICATE
OP := '==' | '!=' | '<' | '<=' | '>' | '>=' | 'in' | 'subset'
ACTION := 'deny' | 'suspend' | 'route_tax' '(' JURIS ',' RATE ')' | 'notify' '(' ROLE ')'
FIELD := IDENT ('.' IDENT)*
1.2 Example — Export Control
policy EAR_742 {
require exporter.kyc.level >= 2;
require not buyer.country in {"IR","KP","SY"} else deny;
require item.eccn in whitelist else suspend;
require tx.value_usd <= limits.by_country(buyer.country);
require zkp_attest("sanctions_clean") == true;
}
1.3 Execution Semantics
- Parse → build AST → compile to ComplianceVM bytecode.
- Deterministic evaluation across validators (pure functions + provided oracle snapshots).
- Side effects limited to
2) Identity & Privacy — ZK + Fingerprint‑Backed DID
2.1 Data Model
- DID
- BioHash v2
- Selective Disclosure
2.2 ZK Circuits (high‑level)
- Proof A — BioMatch: Prove
- Proof B — SanctionsClean: Merkle‑membership proof over compliance dataset snapshot.
- Proof C — LicenseTier: Prove possession of credential with tier ≥ required threshold.
2.3 Identity FSM
NEW → VERIFIED → (VALID | SUSPENDED | REVOKED)
Transitions gated by ZK proofs + DLA authority signature.
2.4 Implementation (pseudocode)
# zk_prove_biomatch(fp_template, biohash, salt): returns proof π
# on-chain verifier verifies vk, π against public inputs
def pre_trade_check(tx):
assert verify_zk(tx.zk_biomatch)
assert verify_zk(tx.zk_sanctions)
assert verify_cred(tx.cred_vc, schema="KYC_TIER")
run_policy(tx, compiled_policy)
return True
3) Risk & Compliance Scoring — AI/ML Stack
3.1 Features (canonical)
- KYC/Behavioral: account_age, doc_consistency_score, device_entropy, velocity.
- Graph: pagerank(entity), betweenness(tx_graph), community_overlap(sanction_clusters).
- Transaction: amount_z, geo_distance, time_of_day, method, merchant_mcc.
- Text/Semantic: invoice_ocr_similarity, purpose_embedding_distance.
3.2 Models
- Compliance Risk Score (CRS): Logistic regression with monotonic constraints for auditability.
- Calibration via isotonic regression; bins 0‑1.
- Anomaly Detection: Robust autoencoder + Isolation Forest ensemble; voting threshold τ.
- Fraud Graph: Heterogeneous GNN (HAN) over Entity–Wallet–Device–IP graph; edges typed.
- Document Integrity: Vision Transformer fine‑tuned for tamper cues; output
3.3 Decision Layer
if S_CRS ≥ 0.85 or anomaly_vote≥2: deny
elif 0.65 ≤ S_CRS < 0.85: hold + ZK reverify + human review SLA=2h
else: allow
3.4 Drift & Governance
- PSI > 0.25 or AUC drop > 5% triggers retrain proposal → DLA vote.
- All models signed and registered in Model Registry on-chain (hash + license).
3.5 Training Data Schema (sanitized)
entities(entity_id, did, kyc_tier, risk_segment, created_at)
transactions(tx_id, entity_id, amount, currency, geo, mcc, method, ts, label)
artifacts(tx_id, doc_hash, ocr_text, doc_score)
graph_edges(src_id, dst_id, edge_type, weight, ts)
labels(tx_id, y_fraud, y_violation)
3.6 Evaluation
- Metrics: AUC, PR‑AUC, Recall@FPR=1%, Detected$ per 1k tx, Avg Review Time.
- Fairness: ΔFPR across segments ≤ 2%.
4) ADE — Automated Distribution Engine (Royalties/Tax/Insurance/Escrow)
4.1 Payout Graph
- DAG
4.2 Settlement Formula
P_i(t) = \min\{ cap_i(t), \max\{ floor_i(t), s_i \cdot (A - T - F - E) + adj_i(t) \} \}
- Rounding: Bankers rounding; dust → community pool; determinism ensured by fixed order.
4.3 Tax Routing
T = Σ_j amount * tax_rate(jurisdiction_j, mcc, nexus)
route(T, authority_wallet)
4.4 Yield Allocation (DeFi)
- Risk‑budget optimizer with constraints
- Greedy knapsack by Sharpe proxy when latency‑constrained.
4.5 Smart Contract Skeleton (Solidity‑like)
struct Split {address to; uint32 bps; uint128 cap; uint128 floor;}
function settle(bytes32 txid, Split[] memory s) external verifies(txid) {
uint256 A = getGross(txid);
uint256 T = computeTax(txid);
uint256 base = A - T - fee(txid) - escrow(txid);
for (Split memory sp: s) {
uint256 amt = clamp(base * sp.bps / 10000, sp.floor, sp.cap);
pay(sp.to, amt);
}
routeTax(T); emit Settled(txid);
}
5) LEX — License Exchange (Compliance‑Before‑Trade)
5.1 Pre‑Trade Algorithm
def can_trade(a, b, asset):
assert has_valid_license(a, asset)
assert has_valid_license(b, asset)
assert run_policy(asset.policy, a, b)
assert price_oracle_sane(asset)
return True
5.2 Order Matching with Compliance Hooks
- Orders enter book only if
- On match,
5.3 Dispute & Rollback
- Challenge window
6) DLA — Decentralized Licensing Authority (Dual DAO)
6.1 Voting
- House‑I (Identity/Consumer): one‑person‑one‑vote via soulbound credential + Proof‑of‑Humanity.
- House‑II (Regulators/Enterprise): stake‑weighted with quadratic cap; slashing for malicious proposals.
- Proposal passes if:
6.2 Governance Scribe
- Append‑only log:
7) Oracles & Scribes (OGS)
7.1 Data Integrity
- Aggregator: median‑of‑n with trimmed 20%; fault tolerance f = ⌊(n−1)/2⌋.
- Attestation: Ed25519 signatures; feed IDs; slash misreporters by bonded stake.
7.2 Snapshotting
- Each policy references oracle snapshot
8) CrownLytics — Analytics & Forecasting
8.1 Heatmaps & Conversion Lift
- Bayesian hierarchical model for multi‑property CTR; partial pooling per property, device, segment.
- Uplift modeling using causal forests for treatment (placement A/B).
8.2 Metrics
- Session‑to‑Book (ThriveSeat), View‑to‑Claim (Locticians), Add‑to‑Cart (XENthrive), Ad Spend ROAS (AdLuxe).
9) CrownPulse — Sentiment & Reputation Index
9.1 Signals
- Text embeddings (domain‑specific), review star trend, dispute rate, refund rate, moderation flags, network centrality.
9.2 Score
S_{Pulse} = w_1 z(emb\_sent) + w_2 z(Δstars) + w_3 z(1-complaint\_rate) + w_4 z(pagerank)
10) Cliques Matching (FindCliques / NFTCliques / ChainCliques)
10.1 Objective
- Maximize mutual‑fit score across purpose, expertise, chain affinity, engagement time, and trust signals.
10.2 Algorithm
- Two‑tower embedding model + cross‑attention reranker.
- Constraint solver to enforce group diversity, time zone coverage, and minimum trust score.
10.3 Score
S_{match} = α\langle u, g \rangle + β\,trust(u) + γ\,compat(u,g) - δ\,overlap(u,g)
11) AdLuxe Network — Bidding & Placement
11.1 Ranking
- eRPM =
- Pacing controller: PID loop to respect daily budgets.
11.2 Creative QC
- Vision/text classifiers for policy violations; OCR rule checks; SHA‑256 dedupe.
12) CrownRewards — Loyalty & Redemption
12.1 Points Engine
- Earn rules via DSL subset: event→points; caps, tiers, decay.
- Redemption smart contract with dynamic exchange rate tied to treasury solvency.
12.2 Anti‑Abuse
- Device entropy + graph link score; cooldowns; negative points for abuse signals.
13) ThriveSeat — Booking & Payments (Stripe Connect Express Ready)
13.1 Availability Engine
- Interval Tree per provider; O( log n ) insert/lookup; atomic reservation with conditional hold TTL.
13.2 Pricing
- Piecewise functions by service + duration + add‑ons; coupon stack validator; tax nexus via ACE.
14) NeuralCraft AI Studio — Usage‑Metered AI
14.1 Quotas & Billing
- Token metering per session; tiered price curves; affiliate splits via ADE.
14.2 Model Ops
- Prompt registry (hash‑addressed); safety filters; audit trail of outputs (hash only, encrypted blob off‑chain).
15) Data Governance, Security & Privacy
- Encryption: PII at rest (AES‑GCM); keys via HSM; envelope encryption.
- Access: ABAC tied to DLA credentials; just‑in‑time grants; dual control for exports.
- Privacy Enhancements: DP training for select models (ε ≤ 4); K‑anonymity for analytics release.
16) Deployment Topology
- Validators: geographically distributed; TEEs optional for private mempool.
- Indexers: read‑only replicas feeding CrownLytics.
- Bridges: light‑client based, message passing with fraud proofs.
17) APIs (Selected)
POST /v1/policy/compile → {bytecode}
POST /v1/identity/prove → {proof}
POST /v1/trade/precheck → {ok, reason}
POST /v1/settlement/execute → {tx_hash}
GET /v1/model/registry/:id → {hash, version, metrics}
18) TLA+ Invariants (sketch)
Invariant ValueConserved == \A tx \in Settlements: SumIn[tx] = SumOut[tx] + Taxes[tx] + Fees[tx] + EscrowDelta[tx]
Invariant LicenseStates == LicenseState \in {VALID, SUSPENDED, REVOKED}
Invariant ZKSoundness == \A p \in ZKProofs: Verified(p)
19) Implementation Guides (per subsystem)
19.1 ACE / Rule DSL
- Stack: Rust compiler → WASM → ComplianceVM bytecode.
- Milestones: Grammar parser → bytecode gen → on‑chain verifier tests → 50 canonical policies.
19.2 ADE
- Stack: Solidity/Vyper contracts; TypeScript SDK; graph payouts.
- Tests: Property‑based tests for rounding, caps/floors, vesting; fuzz tax tables.
19.3 LEX/DLA
- Stack: Matching engine in Rust; governance on-chain modules; event sourcing.
- SLA: Match latency < 50ms p95; dispute resolution < 24h.
19.4 AI Models
- Stack: PyTorch/Lightning; Feast feature store; MLflow registry; Kubeflow pipelines.
- Ops: Canary model rollout; shadow eval; backtest harness.
20) Datasets (internal)
- KYC Artifacts: hash pointers only; stored in secure vault.
- Sanctions & Watchlists: periodic snapshots; Merkle roots published by Scribes.
- Behavioral Logs: clickstream, booking, ad events; aggregated to protect privacy.
Note: This section documents schema, not raw PII.
21) Compliance & Legal Notes
- Map each model/engine to provisional filing(s) and white/black/gold paper references.
- Attach figure set: Architecture, Transaction Lifecycle, TLaaS/LEX/DLA flows, ADE map, Privacy/DAO, Metaprotocol stack.
22) Test Vectors (samples)
{
"tx": {
"amount": 1500.00,
"currency": "USD",
"mcc": "5812",
"buyer_country": "US",
"zk": {"biomatch": "0xabc...", "sanctions": "0xdef..."}
},
"policy": "policy SALES_US { require tx.amount <= 2000; require zkp_attest(\"sanctions_clean\"); }"
}
23) Rollout Plan (90‑Day)
- Days 0‑30: ACE compiler, ComplianceVM MVP, ADE v0, Identity ZK circuit stubs.
- Days 31‑60: LEX pre‑trade hooks, Model Registry, Risk score v1, Oracles.
- Days 61‑90: DLA governance alpha, Full ZK verifier, Yield router, Bridges PoC.
24) What to File (Provisional Index)
- CHLOM Layer‑1 Metaprotocol & ComplianceVM
- TLaaS tokenized licensing, License Registry FSM
- LEX compliance‑before‑trade, atomic ADE settlement
- DLA dual‑house governance + Governance Scribe
- ADE payout graph + tax/yield optimizer
- Identity ZK proofs + BioHash + selective disclosure
- Risk/Anomaly/Fraud ML stack & governance triggers
- Oracles & Scribes aggregation + slashing
- CrownLytics uplift modeling; CrownPulse reputation index
- Cliques matching two‑tower + constraints
Appendix A — Mathematical Details
- Isotonic Calibration: piecewise constant mapping optimizing mean squared error of probabilities.
- Sharpe Proxy: with robust estimators (Huber).
- Graph Regularization: .
Appendix B — Security Proof Sketches
- Oracle Safety: With ≥ 2f+1 honest feeds, trimmed mean resists ≤ f Byzantine reporters.
- Value Conservation: ADE settlement is a pure function of inputs; unit tests + formal spec ensure equality.
Appendix C — Data Protection Patterns
- Data minimization; purpose binding; encrypted learning with DP for high‑risk cohorts.
Appendix D — API/ABI Tables
- Function selectors, event topics, role requirements.
End of Document